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Outline 

•  What are Photometric Redshifts? 
•  Some common training set methods 
•  What is Gaussian Process Regression? 
•  Do different kinds of Kernels matter? 
•  How do I invert these huge non-sparse matrices? 
•  How many galaxies do I need? 
•  Some results 
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What are Photometric Redshifts? 
Photometric Redshifts: A rough estimate of the redshift of 

a galaxy without having to measure a spectrum.  
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z=0.0 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

    z~0.06 (18000 km/s) 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z~0.6 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z~0.90 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z~1.10 
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Photo-z methods 

1.) Spectral Energy Distribution (SED) Fitting: 
• model based approach 
•  uses redshifts derived from spectra of artificial 

galaxies (e.g. Bruzual & Charlot) 

2.) Training-Set methods: 
•  empirical approach 
• uses spectroscopic redshifts from a sub-sample 

of galaxies with the same band-pass filters 
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Training Set Methods need a sub-sample of Galaxies: 

1.  of known spectroscopic redshift with a comparable 
range of magnitudes (u g r i z) as found in our 
Photometric survey objects 

2.  such that I can train u-g-r-i-z to predict redshift 
without actually knowing the redshift in a larger 
sample:    u-g-r-i-z <−> redshift 

•  These will be our “Training Samples” 

Photo-z The Empirical Approach 
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“Training Set” Methods 

   Galaxy Photometric Redshift Prediction History 
u-g-r-i-z <−> redshift 

•  Linear Regression was first tried in the 1960s 
•  Quadratic & Cubic Regression (1970s) 
•  Polynomial Regression (1980s) 
•  Neural Networks (1990s) 
•  Kd Trees & Bayesian Classification Approaches (1990s) 
•  Support Vector Machines & GP Regression (2000s) 



Gaussian Process Regression fitting 

Gaussian Process Regression  Kernel Methods 

Kernel Methods have replaced Neural Networks in much of 
the Machine Learning literature 

WHY?: given a large # of hidden units => GP (Neal 1996).                                   

hn > 100 
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Kernel Methods - Gaussian Process Regression 

GP regression builds a linear model in a very 
high dimensional parameter space    
(“feature space”  Hilbert space).  

•  One can map the data using a function F(x) 
[kernel] into this high (or infinite) 
dimensional parameter space where one can 
perform linear operations. 
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The value of kernels 

F(x) 
Kernel 
Map 

Data in original space:  highly complex 
decision boundaries. 

Data in high dimensional feature 
space after mapping through 
F(x) can yield simple  
decision boundaries. 

Original Data without Kernel Mapped Data using Kernel 
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GP Regression (Kernels) 

GP Advantages: 

•  Small input data training samples  
   (good for higher redshifts?) yet low errors 

•  Realistic estimation of individual redshift 
errors 
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GP Regression 

GP Disadvantages: 
•  Possibly large CPU time requirements (Part I) 

– The Kernel (Covariance Matrix) can be large:   
K=(λ2I+XXT)2  if  X=5x180,000 (our case) then                     
K is a matrix 180,000 x 180,000 and we have: 

– Need to invert this large K matrix - O(N3) operation 
•  Kernel Selection is ambiguous? (Part II) 
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GPR: Part I 

Pick a transfer/covariance function (Kernel) 

        Matern Class Fcn            Radial Basis Fcn 

Rational Quadratic   Polynomial            Neural Nets 
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GPR: Part II 

That matrix inversion… 

With our SDSS (DR3) Main Galaxy spectroscopic sample 
(180,000 galaxies) the matrix size is 180,000 x 180,000 

•  Need a SSI supercomputer with a LOT of ram and cpu time? 
•  One can take a random sample of ~1000 galaxies & invert that 

while bootstrapping n times from full sample [Paper I] 
•  How about some low-rank matrix approximations? 

Remember these are non-sparse matrices! [Paper II] 



Matrix Inversion 

We would prefer to try and invert a larger fraction of 
that matrix. 1000 galaxies isn’t much to train on. 

•  32bit computers are limited to 2GB of RAM.      
O(1000 x 1000) 

•  Reasonably priced 64bit desktops can be purchase with 
upwards of 16GB of RAM O(20,000 x 20,000) 
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Matrix Inversion 

Low-rank approximation works well?   

•  Cholesky Decomposition, Subset of Regressors, Projected 
Process Approx, etc… 

•  With Les Foster + Students (SJSU) we’ve written a paper 
(JMLR) to invert these non-sparse matrices with sizes of  
80000 x 80000 and above 
–  To be published in a few months (referee process completed) 
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Time to Invert! 

•  TIME & MEMORY: These rank-reduction methods 
are much much faster than brute force inversion and 
use much less RAM 

•  We also discovered we only need ~30,000 points to 
gain enough training samples to minimize our rms 
error in the SDSS dataset 
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Stanford 08 

Normal Matrix Inversion Timing Results 
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Reduced Rank Timing Results 
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Paper I Results: Comparing Methods 
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Latest Results: Comparing Methods 


 G
P-

V:
 R

an
k=

10
00

 fo
r 3

60
00

 


 B

ey
on

d 
20

%
 (~

36
00

0)
 R

an
k 

40
0 

is
 fa

irl
y 

fla
t 



CESS 2009 

Conclusions 

•  Gaussian Process Regression is superior to 
most other regression methods for Photo-z 

•  GPR is feasible for large datasets with 
modern matrix inversion techniques 

•  Interdisciplinary: This was made possible 
by the cooperation of Earth Scientists, 
Astronomers, Machine Learning people 
and Mathematicians in 4 different groups. 
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The End 

Thank You 

http://www.giss.nasa.gov/cess2009/
presentations/way.pdf 
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Main Galaxy Sample 80000 Linear 
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Main Galaxy Sample 20000 GPR 
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Main Galaxy Sample 80000 GPR  
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Luminous Red Galaxies 20000 GPR 
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LRG 80000 GPR 
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MGS + 2MASS 20000 
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MGS + 2MASS 80000 
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LRG+ 2MASS 20000 
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LRG+ 2MASS 80000 


